54 research outputs found

    Deriving VTEC Maps from SMOS Radiometric Data

    Get PDF
    Special Issue Ten Years of Remote Sensing at Barcelona Expert Center.-- 18 pages,14 figures, 2 tablesIn this work, a new methodology is proposed in order to derive vertical total electron content (VTEC) maps from the radiometric measurements of the Soil Moisture and Ocean Salinity (SMOS) mission as an alternative approach to those based on external databases and models. This approach uses spatiotemporal filtering techniques with optimized filters to be robust against the thermal noise and image reconstruction artifacts present in SMOS images. It is also possible to retrieve the Faraday rotation angle from the recovered VTEC maps in order to correct the effect that it causes in the SMOS brightness temperaturesThis research was supported by the European Space Agency and Deimos Engenharia (Portugal), SMOS P7 Subcontract DME CP12 no. 2015-005; ERDF (European Regional Development Fund); by the Spanish public funds, projects TEC2017-88850-R and ESP2015-67549-C3-1-R; and through the award “Unidad de Excelencia María de Maeztu” MDM-2016-0600, financed by the “Agencia Estatal de Investigación” (Spain) and by the European Regional Development Fund (ERDF)With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI)Peer reviewe

    De campañas de medidas a productos de salinidad: un tributo a las contribuciones de Jordi Font a la mision SMOS

    Get PDF
    Camps, Adriano ... et al.-- Special volume: Planet Ocean. Scientia Marina 80(Suppl.1) 2016.-- 14 pages, 20 figures[EN] This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre[ES] Este artículo resume algunas de las actividades en las que Jordi Font, profesor de investigación y jefe del Departamento de Física y Tecnología Oceanográfica, del Institut de Ciències del Mar (CSIC) en Barcelona, ha estado desarrollando como co-Investigador Principal de la parte de la misión SMOS de la ESA, una misión Earth Explorer, desde la perspectiva del Remote Sensing Lab, de la Universitat Politècnica de Catalunya. Seguramente, estamos olvidando algunas de sus muchas contribuciones a la teledetección de la salinidad, pero esperamos que esta revisión dé una idea de la importancia de su trabajo. Este artículo se focaliza en los siguientes puntos: 1) las medidas de alta calidad de la constante dieléctrica del agua marina, 2) las campañas de medidas WISE y EuroSTARRS que ayudaron a la definición del modelo geofísico relacionando la temperatura de brillo con el estado del mar, 3) la campaña de medidas FROG 2003 que ayudó a entender la emisión de la espuma marina 4) presentación de las técnicas de GNSS-R para la mejora de la recuperación de la salinidad superficial 5) campañas para la caracterización del instrumento y 6) la implantación del centro de procesado operacional de niveles 3 y 4 en el SMOS Barcelona Expert CentreThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05 and ESP2007-65667-C04, AYA2008-05906-C02-01/ESP, AYA2010-22062-C05 and ESP2015-70014-C2-1-R, and EURYI 2004 awardPeer Reviewe

    The emissivity of foam-covered water surface at L-band: theoretical modeling and experimental results from the FROG 2003 field experiment

    Get PDF
    Sea surface salinity can be measured by microwave radiometry at L-band (1400–1427 MHz). This frequency is a compromise between sensitivity to the salinity, small atmospheric perturbation, and reasonable pixel resolution. The description of the ocean emission depends on two main factors: 1) the sea water permittivity, which is a function of salinity, temperature, and frequency, and 2) the sea surface state, which depends on the wind-induced wave spectrum, swell, and rain-induced roughness spectrum, and by the foam coverage and its emissivity. This study presents a simplified two-layer emission model for foam-covered water and the results of a controlled experiment to measure the foam emissivity as a function of salinity, foam thickness, incidence angle, and polarization. Experimental results are presented, and then compared to the two-layer foam emission model with the measured foam parameters used as input model parameters. At 37 psu salt water the foam-induced emissivity increase is 0.007 per millimeter of foam thickness (extrapolated to nadir), increasing with increasing incidence angles at vertical polarization, and decreasing withPostprint (published version

    RFI detection method at visibility level for SMOS applications

    No full text
    12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), 5-9 March 2012, Villa MondragonePeer Reviewe

    Wide Field of View Microwave Interferometric Radiometer Imaging

    Get PDF
    Special Issue Ten Years of Remote Sensing at Barcelona Expert Center.-- 17 pages, 9 figuresIn microwave interferometric radiometers with a large field of view, as for example the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture and Ocean Salinity (SMOS) satellite, one of the major causes of reconstruction error is the contribution to the visibility of the brightness temperature outside the fundamental period, defined on the basis of reciprocal grids. A mitigation method consisting of estimating this contribution through the application of a brightness temperature model outside the fundamental period is proposed. The main advantage is that it does not require any a posteriori addition of artificial scenes to the reconstructed image. Additionally, a method to avoid the sophisticated matrix regularization and inversion techniques usually applied in microwave interferometry is presented. Image reconstruction algorithms are implemented on a minimum grid size in order to maximize their numerical efficiency. An improved method to apply an apodization window to the reconstructed image for reducing Gibbs oscillations is also proposed. All procedures are generally described considering the single polarization case and successively implemented applying the MIRAS layout in both its single polarization and full polarimetric modes. Results show similar performance of the proposed algorithm with respect to the nominal one applied by SMOS. All algorithms are implemented in the MIRAS Testing Software and have been successfully used for scientific studies by other teamsWe acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)This research was funded by the European Space Agency through SMOS P7 subcontract DME CP12 no. 2015-005 with Deimos Enginheria (Portugal) and by Ministerio de Economia, Industria y Competitividad, Gobierno de España, projects TEC2014-58582-R, TEC2017-88850-R and ESP2015-67549-C3-1-RPeer reviewe

    Characterizing Systematic Errors in the Faraday Rotation Retrieval from SMOS Measurements

    No full text
    2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2020), 26 September - 2 October 2020.-- 4 pages, 5 figuresIn this work, a methodology to correct the Faraday Rotation Angle (FRA) is presented. It consists of calculating a systematic error pattern introduced by MIRAS, which is calculated in zones where the FRA tends to zero. Once calculated, this error is subtracted in the rest of the measurements. In both cases, the FRA is calculated following a process of minimization of the equation that relates the SMOS full polarization radiometric measurements to that parameterThis work has been supported by the European Space Agency and Deimos Engenharia (Portugal), SMOS P7 Subcontract DME CP12 no. 2015-005; ERDF (European Regional Development Fund) and by Spanish public funds, projects TEC2017-88850-R and ESP2015-67549-C3-1-R; and through the award “Unidad de Excelencia María de Maeztu” MDM-2016-0600, financed by the “Agencia Estatal de Investigación” (Spain) and the European Regional Development Fund (ERDF)Peer reviewe
    corecore